МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Механико-математический факультет

УТВЕРЖДАЮ

Руководитель ООП С.П.Гулько
"31 "ab yene 2016 г.

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ДИСЦИПЛИН

Направление подготовки

01.04.01 Математика

Наименование программы

«Преподавание математики и информатики»

Квалификация выпускника

Магистр

Форма обучения

Очная

СОДЕРЖАНИЕ

БЛОК 1. Дисциплины (модули)	4
БАЗОВАЯ ЧАСТЬ	4
Философия и методология научного знания	4
Современные компьютерные технологии	4
Работа с современным программным обеспечением	5
История и методология математики	6
Начальная управленческая подготовка	6
Иностранный язык	7
ВАРИАТИВНАЯ ЧАСТЬ	7
Современные методы анализа и визуализации данных	7
Методика преподавания математики и информатики	8
Современные инновационные практики и технологии в образовании	8
Современное образование: субъекты и контексты развития	9
Современный менеджмент в образовательном учреждении	10
Углубленное изучение некоторых разделов школьной математики	10
КУРСЫ ПО ВЫБОРУ СТУДЕНТА	11
Современные информационные технологии в преподавании математики	11
Неравенства в задачах	12
Матрицы, последовательности, функции	12
Основания математики	12
Алгебра многочленов	13
Избранные задачи планиметрии	13
Методы решения задач с параметрами	14
Задачи стереометрии	14
Комбинаторика	14
Решение нестандартных математических задач	15
Избранные вопросы теории множеств	15
Нестандартный анализ	16
Особенности преподавания теории вероятностей в средней школе	16
Избранные задачи и теоремы элементарной математики	17
Олимпиадные задачи по математике	17
БЛОК 2. ПРАКТИКИ, В ТОМ ЧИСЛЕ НИР	18
Научно-исследовательская работа	18
Педагогическая практика	19
Производственная практика, в т.ч. преддипломная практика	20

Учебная практика с элементами научно-исследовательской деятельности	20
БЛОК 3. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ	21

БЛОК 1. Дисциплины (модули) Базовая часть

«Философия и методология научного знания» (Б.1.1)

Целями освоения дисциплины являются:

- получение знаний в философии через обращение к таким ее разделам, как философия и история науки;
- формирование навыков и компетенций для успешной профессиональной деятельности;
- формирование комплексного представления о философии и методологии науки через философскую рефлексию над наукой и научным познанием.

Задачи курса:

- повышение компетентности в области философии научного исследования;
- формирование исследовательских навыков магистра через изучение проблематики философии и методологии науки;
- повышение методологической грамотности и компетентности в области методологии науки.

Изучение дисциплины направлено на формирование следующих компетенций:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1)
- готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2)
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3)
- готовность руководить коллективом в сфере своей профессиональной деятельности, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия (ОПК-5)

В результате освоения дисциплины обучающийся должен:

Знать: основные научные школы, направления, концепции и методологию научных исследований, историю науки как историю смены концептуальных каркасов;

Уметь:

- применять методологию научного познания в профессиональной деятельности;
- использовать в профессиональной деятельности знание традиционных и современных проблем философии и истории науки

Владеть:

- навыками методологической рефлексии
- анализа и интерпретации философских и научных текстов
- подготовки научно-аналитических обзоров, эссе, рефератов, курсовых работ по философии и истории науки.

Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов — занятия лекционного типа, 16 часов — семинарские занятия), 76 часов составляет самостоятельная работа обучающегося. Форма аттестации — зачет.

«Современные компьютерные технологии» (Б.1.2)

Дисциплина нацелена на формирование у выпускника компетенций:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность создавать и исследовать новые математические модели в естественных науках (ОПК-2);

- готовность самостоятельно создавать прикладные программные средства на основе современных информационных технологий и сетевых ресурсов (ОПК-3);
- способность к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10).

В результате освоения дисциплины обучающийся должен:

Знать: предназначение и возможности пакетов MAPLE, MATHEMATICA, MATLAB, основные типы объектов, с которыми в них можно работать, классы задач, которые можно решать в этих пакетах

Уметь: использовать интерактивные среды, встроенные функции и высокоуровневые языки пакетов МАРLE, MATHEMATICA, MATLAB для аналитических преобразований, численных расчётов и визуализации результатов; обоснованно выбирать средства этих пакетов для решения поставленной математической задачи.

Владеть: навыками применения MAPLE, MATHEMATICA, MATLAB для аналитических преобразований и численных расчетов в различных задачах математики и механики.

Дисциплина включает в себя следующие разделы:

- Интерактивные среды пакетов МАРLE, МАТНЕМАТІСА.
- Основные команды аналитических преобразований и вычислений, используемые в пакетах MAPLE, MATHEMATICA для решения задач в различных разделах математики: алгебра, математический анализ, решение уравнений и неравенств, решение дифференциальных уравнений, общие преобразования.
- Использование графики и анимации в пакетах MAPLE, MATHEMATICA.
- Создание функций и языки программирования в пакетах МАРLE, МАТНЕМАТІСА.
- Интерактивная среда MATLAB, язык программирования, встроенные функции, векторноматричные вычисления.
- Анализ данных и визуализация в MATLAB.
- Построение графического интерфейса в МАТLAB.

Дисциплина реализуется в 1 семестре обучения. Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 48 часов составляет контактная работа обучающегося с преподавателем (16 часов – занятия лекционного типа, 32 – практические занятия), 60 часов составляет самостоятельная работа обучающегося. Форма аттестации – зачет.

«Работа с современным программным обеспечением» (Б.1.3)

Дисциплина нацелена на формирование у выпускника компетенций:

- способности к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовности к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- готовностью самостоятельно создавать прикладные программные средства на основе современных информационных технологий и сетевых ресурсов (ОПК-3);
- способностью к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10).

В результате освоения дисциплины обучающийся должен:

Знать: предназначение и возможности пакетов Word, Excel, Power Point, основные типы объектов, с которыми в них можно работать, классы задач, которые можно решать в этих пакетах

Уметь: использовать интерактивные среды, встроенные функции и высокоуровневые языки пакетов Word, Excel, Power Point для исследований, численных расчётов и визуализации результатов; обоснованно выбирать средства этих пакетов для решения поставленной задачи.

Владеть: навыками применения Word, Excel, Power Point для проведения численных расчетов и представления результатов при подготовке дидактических материалов по математике и информатике.

Дисциплина реализуется во 2 семестре. Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 16 часов составляет контактная работа обучающегося с преподавателем (практические занятия), 56 часов составляет самостоятельная работа обучающегося. Форма аттестации – зачет.

«История и методология математики» (Б.1.4)

Дисциплина нацелена на формирование компетенций:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1)
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3)
- способность находить, формулировать и решать актуальные и значимые проблемы фундаментальной и прикладной математики (ОПК-1);
- способность к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10)
- способность и предрасположенностью к просветительной и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11)
- способность к проведению методических и экспертных работ в области математики (ПК-12).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о закономерностях развития математики, принципах периодизации, понятие о методологии.

Дисциплина реализуется во 2 семестре. Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 34 часа составляет контактная работа обучающегося с преподавателем (занятия лекционного типа). 74 часа составляет самостоятельная работа обучающегося. Форма аттестации — зачет.

«Начальная управленческая подготовка» (Б.1.5)

Дисциплина нацелена формирование следующих компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- готовность руководить коллективом в сфере своей профессиональной деятельности, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия (ОПК-5).

Цель курса — формирование знаний, навыков, умений и личностной готовности к действиям, способствующим достижению успеха в трудоустройстве, построению профессиональной карьеры и повышению конкурентоспособности выпускника ММФ ТГУ на рынке труда.

Задачи курса:

- знакомство с основами управленческой психологии и начальной управленческой подготовки
- знакомство с методами организации поиска работы и устройства работы,
- подготовка к предстоящему процессу трудоустройства,
- прививание навыков управления и работы в команде.

Дисциплина реализуется в 1 семестре. Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов – занятия лекционного типа, 16 часов – практические занятия), 76 часов составляет самостоятельная работа обучающегося. Форма контроля – зачет.

«Иностранный язык» (Б.1.6)

Цели дисциплины. Наряду с практической целью — формирования иноязычной коммуникативной компетенции, т.е. способности и готовности участвовать в иноязычной устной и письменной коммуникации — данный курс ставит общеобразовательные и воспитательные цели. Достижение образовательных целей достигается путём расширения кругозора студентов, повышения уровня их общей культуры и образования, а также культуры мышления, общения и речи. Воспитательный потенциал данного курса реализуется путём формирования уважительного отношения к духовным ценностям других стран и народов.

Задачами учебного курса являются:

- Овладение профильным тезаурусом;
- Приобретение новых знаний и умений использования их в практической деятельности;
- Развитие межкультурной коммуникации в творческой, научной и производственной среде;
- Овладение регистром иноязычного общения в наиболее типичных ситуациях профессиональной сферы.

Изучение дисциплины направлено на формирование компетенции

– готовность к коммуникации в устной и письменной формах на иностранном языке для решения задач профессиональной деятельности (ОПК-4).

В результате освоения дисциплины обучающийся должен

Знать: иметь сформированные систематические знания основных профессиональных терминов и понятий на иностранном языке.

Уметь: обладать сформированным умением писать профессиональные тексты на иностранном языке.

Владеть: успешными и систематически применяемыми навыками профессионального общения в устной и письменной формах на изучаемом иностранном языке.

Дисциплина реализуется в 3 и 4 семестрах. Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов, из которых 64 часа составляет контактная работа обучающегося с преподавателем (практические занятия), 116 часов составляет самостоятельная работа обучающегося. Форма аттестации — зачет в 3 семестре, экзамен в 4 семестре.

Вариативная часть

«Современные методы анализа и визуализации данных» (В.1.1)

Дисциплина нацелена на формирование у выпускника компетенций:

- способность создавать и исследовать новые математические модели в естественных науках (ОПК-2);
- готовность самостоятельно создавать прикладные программные средства на основе современных информационных технологий и сетевых ресурсов (ОПК-3).

В результате освоения дисциплины обучающийся должен:

Знать: постановки задач кластерного анализа, факторного анализа; проблему понижения размерности; модели регрессии; структуру статистических пакетов и пакета STATISTICA.

Уметь: анализировать данные и проблему с целью создания адекватной модели данных и выбора метода решения, использовать встроенную справочную систему при реализации анализа в пакете

STATISTICA, создавать модельные данные для апробации методов анализа; экспортировать и импортировать данные различных форматов в пакете STATISTICA.

Владеть: навыками проведения анализа и визуализации результатов и синтезировать выводы; навыками форматирования графической информации в пакете STATISTICA; навыками поиска информации в сети Интернет.

Дисциплина реализуется в 3 семестре. Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 36 часов составляет контактная работа обучающегося с преподавателем (18 часов — занятия лекционного типа, 18 — практические занятия), 72 часа составляет самостоятельная работа обучающегося. Форма аттестации — зачет.

«Методика преподавания математики и информатики» (В.1.2)

Программа дисциплины «Методика преподавания математики и информатики» направлена на освоение теоретических основ обучения, ознакомление с основными технологиями обучения математике и информатике, подготовку магистрантов к обучению и воспитанию средствами математики и информатики обучающихся образовательных учреждений разных профилей.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- способности к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовности действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовности к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способности к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10);
- способности и предрасположенностью к просветительной и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способности к проведению методических и экспертных работ в области математики (ПК-12). Содержание дисциплины охватывает круг вопросов, связанных с подготовкой учителей математики и информатики к работе в современных условиях образования.

Дисциплина реализуется в 1 и 2 семестрах обучения. Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часа, из которых 64 часа составляет контактная работа обучающегося с преподавателем (32 часа — занятия лекционного типа, 32 часа — практические занятия), 188 часов составляет самостоятельная работа обучающегося. Форма аттестации — экзамен (1 семестр), зачет с оценкой (2 семестр).

«Современные инновационные практики и технологии в образовании» (В.1.3)

Целью дисциплины является формирование у обучающихся компетенций, позволяющих применять современные образовательные технологии, разрабатываемые и внедряемые в современных инновационных практиках.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- способности к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовности действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовности к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способности к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и

организациях дополнительного образования (ПК-10).

Образовательные результаты, которые смогут достигнуть обучающиеся в процессе изучения лисшиплины:

Знать:

- требования к учителю, выбирающего применение образовательной технологии в своей практике, включая требования к выбору коммуникативной стратегии и тактики;
- теоретические основания выбора образовательной технологии, включая методологические представления об образовании, цели и результаты, модель образовательного процесса;

Уметь:

- обосновывать выбор образовательной технологии в конкретной ситуации, нести социальную и этическую ответственность за данный выбор;
- обосновывать выбор образовательной технологии, опираясь на самооценку личностных и профессиональных качеств, целей и ценностей и возможностей применения коммуникативной стратегии и тактики;
- разрабатывать технологическую карту курса (темы курса или цикла занятий);
- разрабатывать технологическую карту учебного занятия, используя приемы педагогической поддержки.

Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, из которых 24 часа составляет аудиторная работа (лекционные занятия), 48 часов составляет самостоятельная работа обучающегося. Форма контроля: зачет.

«Современное образование: субъекты и контексты развития» (В.1.4)

Цели освоения дисциплины:

- формирование представлений о социальных, культурно-исторических тенденциях развития современного образования;
- развитие компетенций контекстуального анализа системы образования;
- формирование компетенций выбора средств педагогической деятельности на основе гуманитарного и антропологического подходов.

Компетенции обучающихся, формируемые в результате освоения дисциплины:

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- способности к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовности действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовности к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- готовность к коммуникации в устной и письменной формах на иностранном языке для решения задач профессиональной деятельности (ОПК-4);
- способности к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10).

Структура и содержание дисциплины

- Модуль 1. Вызовы и тренды развития современного образования
- Модуль 2. Инновации в образовании: потенциал, проблемы, направления развития.
- Модуль 3. Обоснование направлений развития деятельности учителя (преподавателя)

Дисциплина реализуется в 1 семестре обучения. Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, из них 24 - аудиторных часа (лекционные занятия), 48 часов самостоятельной работы. Форма контроля: зачет.

«Современный менеджмент в образовательном учреждении»

(B.1.5)

Целью освоения дисциплины является формирование компетенций управления образовательным учреждением в условиях перехода на новые федеральные государственные стандарты.

Компетенции обучающегося, формируемые в результате освоения дисциплины:

- способности к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовности действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовности к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- готовность руководить коллективом в сфере своей профессиональной деятельности, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия (ОПК-5).

В результате освоения дисциплины обучающийся должен:

Знать:

- ключевые стратегии и модели управления образовательными учреждениями;
- требования ФГОС к управленческим условиям образовательного процесса и управлению учреждением (ОУ);
- концепцию организационного дизайна и ее применение в управлении ОУ;
- задачи и содержание управления в ОУ для обеспечения качества образования в соответствии с новыми ФГОС;
- особенности управления инновациями в ОУ.

Уметь:

- делать аргументированное и целостное письменное (устное) описание образовательного учреждения, обосновывать тенденции и проблемы его функционирования и развития с учетом теоретических положений курса;
- проводить анализ особенностей организационного дизайна ОУ;
- выбирать и обосновывать модель управления изменениями в ОУ для решения задач повышения качества образования в условиях новых ФГОС;
- разрабатывать комплекс действий по управлению инновациями в ОУ.

Владеть:

- методикой проектирования организационных изменений в ОУ для решения задач повышения качества образования в условиях новых ФГОС.

Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, из них 18 аудиторных часов (лекционные), 54 часа самостоятельной работы. Форма контроля: зачет.

«Углубленное изучение некоторых разделов школьной математики» (В.1.6)

Данная дисциплина нацелена на углубление знаний о теоретических основах школьной математики, связанных с такими разделами, как математический анализ, теория множеств, алгебра и теория чисел, геометрия. Содержательно данная дисциплина знакомит со строгим формально-логическим обоснованием основных концепций, методов и понятий школьного курса математики, а также с применением методов высшей математики при решении нестандартных задач элементарной математики.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- способность к преподаванию физико-математических дисциплин и информатики в

образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);

- способность и предрасположенность к просветительской и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способность к проведению методических и экспертных работ в области математики (ПК-12). Дисциплина реализуется в 1 и 2 семестрах обучения. Общая трудоемкость дисциплины составляет 8 зачетных единиц, 288 часов, из которых 112 часов составляет аудиторная работа обучающегося (48 часов занятия лекционного типа, 64 часа практические занятия), 176 часов составляет самостоятельная работа обучающегося. Форма контроля: экзамен в 1 семестре и экзамен во 2 семестре.

Курсы по выбору студента

«Современные информационные технологии в преподавании математики» (В.1.7)

Целью освоения дисциплины является изучение возможностей современных информационных технологий для повышения эффективности преподавания математики в общеобразовательной школе. К этим технологиям относятся технологии электронного обучения, создания тестов с автоматической проверкой результатов и проведения тестирования, организации on-line и off-line общения.

Изучение дисциплины направлено на формирование следующих компетенций:

- Способность к абстрактному мышлению, анализу, синтезу в области применения информационных технологий в преподавании математики (ОК-1);
- Готовность самостоятельно создавать прикладные программные средства в педагогических целях на основе современных информационных технологий и сетевых ресурсов (ОПК-3);
- Способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования с применением информационных технологий и программных продуктов (ПК-10).

В результате освоения дисциплины обучающийся должен:

- Знать: о возможностях существующих информационных технологий и программных продуктов, которые могут применяться в преподавании математики. Понимать методические основы использования информационных технологий и программных продуктов в преподавании математики
- Уметь: анализировать педагогическую задачу с точки зрения применения информационных технологий, выделять общие идеи и подбирать методы ее решения. Использовать имеющиеся технологии и программные продукты для создания обучающих программных средств и сетевых ресурсов. Применять в процессе преподавания математики методики и разрабатывать новые способы использования технологий
- **Владеть:** Быть способным отслеживать появление новых технологий и выделять из них те, которые могут применяться в преподавании математики Дисциплина реализуется во 2 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из них 32 аудиторных часа (лекционные 16 часов и практические 16 часов), 112 часов самостоятельной работы. Форма контроля: экзамен.

«Неравенства в задачах» (В.1.8)

Данная дисциплина нацелена на углубление знаний о числовых, алгебраических, тригонометрических и трансцендентных неравенств. Содержательно данная дисциплина знакомит с различными методами доказательства и решения неравенств, а также с применением неравенств при решении текстовых задач.

Дисциплина нацелена на формирование общекультурных, общепрофессиональных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- осознание социальной значимости будущей профессии, мотивация к осуществлению профессиональной деятельности (ОПК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

Дисциплина реализуется во 2 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов — занятия лекционного типа, 16 часов — практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля: экзамен.

«Матрицы, последовательности, функции» (В.1.9)

Данная дисциплина нацелена на углубление знаний о различных видах числовых функций с дискретной областью определения (в частности, о матрицах и последовательностях). Содержательно данная дисциплина знакомит с различными методами задания и исследования свойств матриц и последовательностей, а также с применением матриц и последовательность при решении текстовых задач.

Дисциплина нацелена на формирование общекультурных, общепрофессиональных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- осознание социальной значимости будущей профессии, мотивация к осуществлению профессиональной деятельности (ОПК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

Дисциплина реализуется во 2 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов – занятия лекционного типа, 16 часов – практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля – экзамен.

«Основания математики» (В.1.10)

Дисциплина «Основания математики» входит в вариативную часть цикла профессиональных дисциплин и является дисциплиной, выбираемой студентом.

Целью освоения дисциплины «Основания математики» является углубление знаний о теоретических основах высшей математики. Содержательно данная дисциплина знакомит с различными подходами построения моделей поля вещественных чисел. Теория вещественного (действительного) числа является одним из важнейших узловых вопросов математики. Свойства числовой прямой являются тем фундаментом, на котором строится теория пределов, а вместе с ней всё здание современного математического анализа. В курсе рассматриваются три подхода к

построению модели вещественного числа: бесконечные десятичные дроби, сечения во множестве рациональных чисел, фундаментальные последовательности рациональных чисел

Изучение дисциплины направлено на формирование следующих компетенций:

- Способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- Способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

В результате освоения дисциплины обучающийся должен: Знать:

- Знать аксиоматическое представление множества вещественных чисел.
- Знать три способа построения моделей теории вещественного числа.

Уметь:

- Уметь на основе анализа увидеть и корректно сформулировать результат, самостоятельно увидеть следствия сформулированного результата.
- Уметь решать математические задачи на действия с вещественными числами, уметь донести решение до слушателя.

Владеть:

- Владеть системой абстрактных представлений об основах и методах математической логики.
- Владеть системой знаний о различных подходах к построению теории вещественного числа.

Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет аудиторная работа обучающегося (18 часов — занятия лекционного типа, 18 часов — практические занятия), 108 часов составляет самостоятельная работа обучающегося. Форма контроля: экзамен.

«Алгебра многочленов» (В.1.11)

Данная дисциплина нацелена на углубление знаний о многочленах и алгебраических дробях. Содержательно данная дисциплина знакомит с различными методами преобразования многочленов и нахождения корней многочленов, а также с интерполяцией функций многочленами.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (18 часов — занятия лекционного типа, 18 часов — практические занятия), 108 часов составляет самостоятельная работа обучающегося. Форма контроля — экзамен.

«Избранные задачи планиметрии» (В.1.12)

Данная дисциплина нацелена на углубление знаний о свойствах плоских фигур (прямые, углы, многоугольники, окружности). Содержательно данная дисциплина знакомит с различными методами решения планиметрических задач.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- способность к преподаванию физико-математических дисциплин и информатики в

образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (18 часов – занятия лекционного типа, 18 часов – практические занятия), 108 часов составляет самостоятельная работа обучающегося. Форма контроля – экзамен.

«Методы решения задач с параметрами» (В.1.13)

Данная дисциплина нацелена на углубление знаний о числовых уравнениях, неравенствах и их системах, функциях. Содержательно данная дисциплина знакомит с различными аналитическими и графическими методами исследования свойств решений уравнений, неравенств и их систем, содержащих числовой параметр.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);
- способность к проведению методических и экспертных работ в области математики (ПК-12). Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (практические занятия), 108 часов составляет самостоятельная работа обучающегося. Форма контроля экзамен.

«Задачи стереометрии» (В.1.14)

Данная дисциплина нацелена на углубление знаний о свойствах пространственных фигур (прямые, плоскости, двугранные углы, многогранники, поверхности вращения, сферы). Содержательно данная дисциплина знакомит с различными методами решения стереометрических задач.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);
- способность к проведению методических и экспертных работ в области математики (ПК-12). Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (практические занятия), 108 часов составляет самостоятельная работа обучающегося. Форма контроля экзамен.

«Комбинаторика» (В.1.15)

Данная дисциплина нацелена на углубление знаний, связанных с комбинаторными свойствами конечных множеств. Содержательно данная дисциплина знакомит с методами перебора и подсчета количества элементов различных конечных множеств.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

способность к абстрактному мышлению, анализу, синтезу (ОК-1);

- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);
- способность к проведению методических и экспертных работ в области математики (ПК-12). Дисциплина реализуется в 3 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (практические занятия), 108 часов составляет самостоятельная работа обучающегося. Форма контроля экзамен.

«Решение нестандартных математических задач» (В.1.16)

Данная дисциплина нацелена на углубление навыков решения задач школьной математики, связанных с такими разделами, как математическая логика, теория множеств, алгебра, теория чисел, геометрия. Содержательно данная дисциплина знакомит с различными методами решения задач, имеющих формулировку, нестандартную для базового школьного курса математики.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов — занятия лекционного типа, 16 часов — практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля — экзамен.

«Избранные вопросы теории множеств» (В.1.17)

Данная дисциплина нацелена на углубление знаний, связанных со свойствами множеств и действий над ними. Содержательно данная дисциплина знакомит с основными теоретико-множественными идеями и методами, лежащими в основе решения различных логических, вероятностных, алгебраических и геометрических задач.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов — занятия лекционного типа, 16 часов — практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля — экзамен.

«Нестандартный анализ» (В.1.18)

Цели дисциплины: углубление знаний о теоретико-множественных основах высшей математики. Содержательно данная дисциплина знакомит с понятиями фильтра, ультрафильтра, ультрастепени, с принципами нестандартного (неархимедова) математического анализа (переноса, идеализации, стандартизации), со строением нестандартной вещественной прямой, где присутствуют бесконечно малые и бесконечно большие числа, над которыми можно совершать арифметические действия. Дисциплина формирует необходимые знания и умения для последующего овладения ООП и написания ВКР.

Изучение дисциплины направлено на формирование следующих компетенций:

- Способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- Готовностью действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- Готовностью к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- Способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10).

В результате освоения дисциплины обучающийся должен: Знать:

- Обладать системой знаний о теоретических основах нестандартного анализа. Знать понятие фильтра и ультрафильтра, модели аксиоматической теории, суперструктуры. Знать принципы нестандартного анализа (переноса, идеализации, стандартизации).
- Знать приёмы работы со студентами и школьниками путем составления планов занятий по разделам данной дисциплины.

Уметь

- Уметь формулировать определения и теоремы стандартного анализа на языке нестандартного и проводить доказательства нестандартными методами и уметь донести решение задач до слушателя.
- Уметь на основе анализа увидеть и корректно сформулировать результат, самостоятельно увидеть следствия сформулированного результата.
- Уметь доступно и выразить свою мысль и нести ответственность за предложенное решение задач по теме курса, доказывать и грамотно обосновывать ответ у доски.

Владеть:

- Овладеть навыками выполнения исследовательских заданий и упражнений при решении домашней работы по теме курса с последующим выступлением на практическом занятии.
- Обладать системой абстрактных представлений об основах и методах нестандартного анализа.

Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет аудиторная работа обучающегося (16 часов — занятия лекционного типа, 16 часов — практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля — экзамен.

«Особенности преподавания теории вероятностей в средней школе» (В.1.19)

Данная дисциплина нацелена на углубление знаний, связанных с таким разделом математики, как теория вероятностей, а также с методическими особенностями преподавания этого раздела в школе. Содержательно данная дисциплина знакомит с методами нахождения вероятностей случайных событий и числовых характеристик случайных величин.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);

- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);
- способность к проведению методических и экспертных работ в области математики (ПК-12).

Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов – занятия лекционного типа, 16 часов – практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля – экзамен.

«Избранные задачи и теоремы элементарной математики» (В.1.20)

Данная дисциплина нацелена на углубление знаний, связанных с такими разделами математики, как алгебра, теория чисел, математический анализ и геометрия. Содержательно данная дисциплина знакомит с некоторыми задачами и теоремами элементарной математики, не входящими в профильный курс школьной математики, но при этом оказывающимися полезными при решении конкурсных и олимпиадных задач.

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);
- способность к проведению методических и экспертных работ в области математики (ПК-12). Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов занятия лекционного типа, 16 часов практические занятия), 112 часов составляет самостоятельная работа обучающегося. Форма контроля экзамен.

«Олимпиадные задачи по математике» (В.1.21)

Данная дисциплина нацелена на углубление навыков решения школьных конкурсных и олимпиадных задач. Содержательно данная дисциплина знакомит с методами решения задач, аналогичных задачам, регулярно встречающимся на различных математических конкурсах, соревнованиях и олимпиадах, а также с историей развития математических конкурсов и олимпиад. Дисциплина нацелена на формирование общекультурных и профессиональных компетенций выпускника:

- способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях основного общего, среднего общего, среднего профессионального и высшего образования (ПК-10);
- способность к проведению методических и экспертных работ в области математики (ПК-12).

Дисциплина реализуется в 4 семестре обучения. Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 32 часа составляет контактная работа обучающегося с преподавателем (16 часов – занятия лекционного типа, 16 часов – практические занятия), 112 часов составляет самостоятельная работа обучающегося. Отчетность – экзамен.

Блок 2. Практики, в том числе НИР

Научно-исследовательская работа (В.3.1)

научно-исследовательской работы, проводимой на 1-2 курсах «Преподавание математики и информатики» по направлению подготовки 01.04.01-Математика, является закрепление и углубление теоретической подготовки обучающегося в области универсальных (общих) социально-личностных, общекультурных, общенаучных, инструментальных и системных компетенций и приобретение им практических навыков и компетенций в сфере профессиональной деятельности. В области воспитания личности целью научно-исследовательской работы по направлению подготовки «Математика» является развитие у студентов личностных качеств, способствующих их творческой активности, общекультурному росту и социальной целеустремленности, организованности, трудолюбия, мобильности, ответственности, самостоятельности, гражданственности, приверженности этическим ценностям, толерантности, настойчивости в достижении цели. НИР предполагает исследовательскую работу, направленную на развитие у магистрантов способности к самостоятельным теоретическим и практическим суждениям и выводам, умений объективной оценки научной информации, свободы научного поиска и стремления к применению научных знаний в образовательной деятельности.

- Задачами научно-исследовательской работы являются:
- формирование профессионального научно-исследовательского мышления магистрантов, обеспечение у них четкого представления об основных профессиональных задачах, способах их решения.
- подготовка К профессиональному саморазвитию и самосовершенствованию, развитию инновационного мышления И творческого потенциала, профессионального мастерства, самостоятельному формулированию и постановке научно-педагогических проблем и решение задач, научно-исследовательской работы. требующих **УГЛУ** бленных возникающих холе профессиональных знаний.

В процессе научно-исследовательской работы студент приобретает профессиональные компетенции профессиональной *научно-педагогической* деятельности (ПК):

- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10);
- способность и предрасположенность к просветительской и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способность к проведению методических и экспертных работ в области математики (ПК-12).

НИР магистров выполняется на протяжении всего периода обучения в магистратуре. НИР осуществляется магистрантами одновременно с учебным процессом, в ходе научно-производственной практики, в процессе написания диссертации, а также согласно учебному плану и графику учебного процесса в специально отведенное время.

Научно-исследовательская работа студента должна рассматриваться в рамках деятельности по написанию выпускной работы и является подготовительным этапом преддипломной (производственной) практики. Научно-исследовательская работа опирается в той или иной степени на весь комплекс дисциплин всех циклов ООП первого и второго года магистратуры в соответствии с темой НИР, сформулированной студенту его научным руководителем.

Общая трудоемкость научно-исследовательской работы составляет 35 зачетных единиц (1260 часа). Формы контроля: 1, 3 семестр – зачет по результатам выступления на заседании выпускающей кафедры, 2, 4 – зачет с оценкой по результатам защиты отчета по НИР на выпускающей кафедре.

Педагогическая практика (В.3.2)

Педагогическая практика представляет собой вид учебных занятий, непосредственно ориентированных на профессионально-практическую подготовку магистрантов.

Целью педагогической практики является овладение умениями решать профессиональные задачи в области педагогической деятельности.

Для прохождения производственной практики требуются знания, полученные в процессе изучения дисциплин «Углубленное изучение некоторых разделов школьной математики», «История и методология математики», «Современные компьютерные технологии», «Современные информационные технологии в преподавании математики», дисциплин, связанных с методикой преподавания математики, информатики в высшей и средней школе.

Педагогическая практика нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- способности к абстрактному мышлению, анализу, синтезу (ОК-1);
- готовности действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- готовности к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- готовность к коммуникации в устной и письменной формах на государственном языке Российской Федерации и иностранном языке для решения задач профессиональной деятельности (ОПК-4);
- способность руководить коллективом в сфере своей профессиональной деятельности, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия (ОПК-5);
- способности к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10);
- способности и предрасположенностью к просветительной и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способности к проведению методических и экспертных работ в области математики (ПК-12).
- В процессе прохождения практики магистрант последовательно выполняет все этапы практики, процедуры, результаты которых находят прямое или опосредованное отражение в отчете.

В ходе основного периода практики магистрант разрабатывает и проводит цикл уроков/учебных занятий (количество занятий определяется утвержденным календарно-тематическим планом для конкретной образовательной организации и конкретной группы обучающихся), а также внеурочное мероприятие, разрабатывает пакет диагностических материалов или рабочую программу элективного курса, реализует исследовательскую работу обучающихся, выполняет индивидуальное исследовательское задание в рамках темы магистерской работы (написание научной статьи; разработка плана и проведение методического эксперимента, анкетирования, диагностики; разработка учебно-методических материалов, проведение предметных конкурсов, олимпиад, научно-практических конференций и др.).

Материалы, собранные в процессе прохождения практики, используются для написания магистерской диссертации. Возможно предложение дополнительных заданий от руководителя образовательного учреждения по месту прохождения практики.

Результаты проделанной работы в ходе практики оформляются в виде отчета. Предусмотрена защита результатов практики на конференции.

Общая трудоемкость педагогической практики составляет 6 зачетных единиц, проводится в течение 4-х недель в 3-м семестре обучения в магистратуре.

Производственная практика, в т.ч. преддипломная практика (В.З.З)

Цели и задачи преддипломной (научно-производственной) практики магистров по направлению подготовки 01.04.01 «Математика», программа «Преподавание математики и информатики» состоят в развитии следующих общекультурных и профессиональных компетенций в области научно-педагогической деятельности:

- готовность к саморазвитию, самореализации, использованию творческого потенциала (ОК-3);
- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10);
- способность и предрасположенность к просветительской и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способность к проведению методических и экспертных работ в области математики (ПК-12). В период научно-производственной практики решаются следующие задачи:
- магистрант собирает фактический, материал, достаточный для выполнения магистерской диссертации, с учетом специфики и тематики магистерской диссертации;
- выполняет совместно с руководителем определенный индивидуальным заданием на практику круг исследовательских теоретических и практических работ.

Согласно учебно-производственному графику преддипломная (научно-производственная) практика проводится на втором году обучения в 4-ом семестре. Общая трудоемкость практики составляет 6 зачетных единиц, 216 часов.

По итогам практики каждым практикантом предоставляется отчет по практике, который должен быть публично защищен на кафедре. В качестве формы итогового контроля практикантов устанавливается оценка по результатам защиты отчета.

Учебная практика с элементами научно-исследовательской деятельности (В.3.4)

Учебная практика с элементами научно-исследовательской деятельности относится к Блоку 2 «Практики, в том числе НИР» ООП подготовки студентов по направлению 01.04.01 «Математика», программа "Преподавание математики и информатики ".

Научно-исследовательская деятельность является одним из элементов учебного процесса подготовки магистров. Она способствует закреплению и углублению теоретических знаний студентов, полученных при обучении, умению ставить задачи, анализировать полученные результаты и делать выводы, приобретению и развитию навыков самостоятельной научно-Основной целью учебной практики с исследовательской работы. элементами научноисследовательской деятельности магистранта является получение первичных профессиональных умений и навыков научно-исследовательской деятельности, развитие способности самостоятельного осуществления научно-исследовательской работы, связанной решением сложных профессиональных задач в инновационных условиях. Основной задачей практики является приобретение опыта в исследовании актуальной научной проблемы, а также подбор необходимых материалов для выполнения выпускной квалификационной работы - магистерской диссертации.

Дисциплина нацелена на формирование у выпускника:

профессиональных компетенций:

- способность к преподаванию физико-математических дисциплин и информатики в образовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10);
- способность и предрасположенность к просветительской и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способность к проведению методических и экспертных работ в области математики (ПК-12).

Учебная практика с элементами научно-исследовательской деятельности предусматривает следующие формы организации учебного процесса: *самостоятельная работа студента, консультации с руководителем практики*.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль в форме отчетов по выполнению индивидуальных заданий руководителя практики,
- промежуточный контроль в форме зачета в 1 семестре.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы (144 часа), 144 часа - самостоятельная работа обучающегося.

Блок 3. Государственная итоговая аттестация

Государственная итоговая аттестация (Б.4.1)

Программа определяет порядок проведения государственной итоговой аттестации основной образовательной магистерской программы "Преподавание математики и информатики", осуществляемой по направлению 01.04.01 Математика на механико-математическом факультете НИ ТГУ . Целью ГИА является определение соответствия результатов освоения ООП требованиям ФГОС НИ ТГУ в части сформированности профессиональных компетенций и готовности выпускников к осуществлению основных видов профессиональной деятельности, предусмотренных ООП.

Целью ГИА является определение соответствия результатов освоения ООП требованиям ФГОС НИ ТГУ в части сформированности профессиональных компетенций:

- способностью к преподаванию физико-математических дисциплин и информатики в общеобразовательных организациях, профессиональных образовательных организациях и организациях дополнительного образования (ПК-10);
- способностью и предрасположенностью к просветительной и воспитательной деятельности, готовность пропагандировать и популяризировать научные достижения (ПК-11);
- способностью к проведению методических и экспертных работ в области математики (ПК-12) и готовности выпускников к осуществлению основных видов профессиональной деятельности, предусмотренных ООП.

Государственная итоговая аттестация относится к обязательной части ООП, реализуется на втором году обучения во втором семестре. Общая трудоемкость ГИА составляет 6 зачетных единиц, 216 часов.

Основной образовательной магистерской программой «Преподавание математики и информатики», направление 01.04.01 Математика, осуществляемой на механикоматематическом факультете НИ ТГУ, предусмотрена защита магистерской диссертации. Выпускная квалификационная работа (ВКР) представляет собой выполненную обучающимся работу, демонстрирующую уровень подготовленности выпускника к самостоятельной профессиональной деятельности. ВКР выполняется в форме магистерской диссертации, устанавливаемой НИ ТГУ в соответствии с требованиями ФГОС/СУОС НИ ТГУ по соответствующему направлению подготовки.